Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
BMC Bioinformatics ; 24(1): 232, 2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20234026

ABSTRACT

BACKGROUND: Recent epidemic outbreaks such as the SARS-CoV-2 pandemic and the mpox outbreak in 2022 have demonstrated the value of genomic sequencing data for tracking the origin and spread of pathogens. Laboratories around the globe generated new sequences at unprecedented speed and volume and bioinformaticians developed new tools and dashboards to analyze this wealth of data. However, a major challenge that remains is the lack of simple and efficient approaches for accessing and processing sequencing data. RESULTS: The Lightweight API for Sequences (LAPIS) facilitates rapid retrieval and analysis of genomic sequencing data through a REST API. It supports complex mutation- and metadata-based queries and can perform aggregation operations on massive datasets. LAPIS is optimized for typical questions relevant to genomic epidemiology. Using a newly-developed in-memory database engine, it has a high speed and throughput: between 25 January and 4 February 2023, the SARS-CoV-2 instance of LAPIS, which contains 14.5 million sequences, processed over 20 million requests with a mean response time of 411 ms and a median response time of 1 ms. LAPIS is the core engine behind our dashboards on genspectrum.org and we currently maintain public LAPIS instances for SARS-CoV-2 and mpox. CONCLUSIONS: Powered by an optimized database engine and available through a web API, LAPIS enhances the accessibility of genomic sequencing data. It is designed to serve as a common backend for dashboards and analyses with the potential to be integrated into common database platforms such as GenBank.


Subject(s)
COVID-19 , Monkeypox , Humans , SARS-CoV-2/genetics , Genome , Genomics
2.
Lancet Public Health ; 8(4): e311-e317, 2023 04.
Article in English | MEDLINE | ID: covidwho-2269236

ABSTRACT

Effectiveness of non-pharmaceutical interventions (NPIs), such as school closures and stay-at-home orders, during the COVID-19 pandemic has been assessed in many studies. Such assessments can inform public health policies and contribute to evidence-based choices of NPIs during subsequent waves or future epidemics. However, methodological issues and no standardised assessment practices have restricted the practical value of the existing evidence. Here, we present and discuss lessons learned from the COVID-19 pandemic and make recommendations for standardising and improving assessment, data collection, and modelling. These recommendations could contribute to reliable and policy-relevant assessments of the effectiveness of NPIs during future epidemics.


Subject(s)
COVID-19 , Humans , Pandemics/prevention & control , Data Collection , Public Policy , Schools
3.
Bioinformatics ; 2021 Dec 25.
Article in English | MEDLINE | ID: covidwho-2228777

ABSTRACT

SUMMARY: The CoV-Spectrum website supports the identification of new SARS-CoV-2 variants of concern and the tracking of known variants. Its flexible amino acid and nucleotide mutation search allows querying of variants before they are designated by a lineage nomenclature system. The platform brings together SARS-CoV-2 data from different sources and applies analyses. Results include the proportion of different variants over time, their demographic and geographic distributions, common mutations, hospitalization and mortality probabilities, estimates for transmission fitness advantage and insights obtained from wastewater samples. AVAILABILITY AND IMPLEMENTATION: CoV-Spectrum is available at https://cov-spectrum.ethz.ch. The code is released under the GPL-3.0 license at https://github.com/cevo-public/cov-spectrum-website.

4.
Sci Transl Med ; : eabn7979, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2233623

ABSTRACT

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Switzerland in 2020 - the sixth largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020. We contrasted these estimates with simple null models representing the absence of certain public health measures. We show that Switzerland's border closures de-coupled case introductions from incidence in neighboring countries. Under a simple model, we estimate an 86-98% reduction in introductions during Switzerland's strictest border closures. Furthermore, the Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. Last, we quantified local transmission dynamics once introductions into Switzerland occurred, using a phylodynamic model. We found that transmission slowed 35-63% upon outbreak detection in summer 2020, but not in fall. This finding may indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.

5.
Swiss Med Wkly ; 152: w30202, 2022 06 20.
Article in English | MEDLINE | ID: covidwho-2202460

ABSTRACT

AIMS OF THE STUDY: Wastewater-based epidemiology has contributed significantly to the comprehension of the dynamics of the current COVID-19 pandemic. Its additional value in monitoring SARS-CoV-2 circulation in the population and identifying newly arising variants independently of diagnostic testing is now undisputed. As a proof of concept, we report here correlations between SARS-CoV-2 detection in wastewater and the officially recorded COVID-19 case numbers, as well as the validity of such surveillance to detect emerging variants, exemplified by the detection of the B.1.1.529 variant Omicron in Basel, Switzerland. METHODS: From July 1 to December 31, 2021, wastewater samples were collected six times a week from the inflow of the local wastewater treatment plant that receives wastewater from the catchment area of the city of Basel, Switzerland, comprising 273,075 inhabitants. The number of SARS-CoV-2 RNA copies was determined by reverse transcriptase-quantitative PCR. Spearman's rank correlation coefficients were calculated to determine correlations with the median seven-day incidence of genome copies per litre of wastewater and official case data. To explore delayed correlation effects between the seven-day median number of genome copies/litre wastewater and the median seven-day incidence of SARS-CoV-2 cases, time-lagged Spearman's rank correlation coefficients were calculated for up to 14 days. RNA extracts from daily wastewater samples were used to genotype circulating SARS-CoV-2 variants by next-generation sequencing. RESULTS: The number of daily cases and the median seven-day incidence of SARS-CoV-2 infections in the catchment area showed a high correlation with SARS-CoV-2 measurements in wastewater samples. All correlations between the seven-day median number of genome copies/litre wastewater and the time-lagged median seven-day incidence of SARS-CoV-2 cases were significant (p<0.001) for the investigated lag of up to 14 days. Correlation coefficients declined constantly from the maximum of 0.9395 on day 1 to the minimum of 0.8016 on day 14. The B.1.1.529 variant Omicron was detected in wastewater samples collected on November 21, 2021, before its official acknowledgement in a clinical sample by health authorities. CONCLUSIONS: In this proof-of-concept study, wastewater-based epidemiology proved a reliable and sensitive surveillance approach, complementing routine clinical testing for mapping COVID-19 pandemic dynamics and observing newly circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics , Switzerland/epidemiology , Wastewater/analysis
6.
Viruses ; 15(1)2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2200885

ABSTRACT

In human beings, there are five reported variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). However, in contrast to human beings, descriptions of infections of animals with specific variants are still rare. The aim of this study is to systematically investigate SARS-CoV-2 infections in companion animals in close contact with SARS-CoV-2-positive owners ("COVID-19 households") with a focus on the Delta variant. Samples, obtained from companion animals and their owners were analyzed using a real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Animals were also tested for antibodies and neutralizing activity against SARS-CoV-2. Eleven cats and three dogs in nine COVID-19-positive households were RT-qPCR and/or serologically positive for the SARS-CoV-2 Delta variant. For seven animals, the genetic sequence could be determined. The animals were infected by one of the pangolin lineages B.1.617.2, AY.4, AY.43 and AY.129 and between zero and three single-nucleotide polymorphisms (SNPs) were detected between the viral genomes of animals and their owners, indicating within-household transmission between animal and owner and in multi-pet households also between the animals. NGS data identified SNPs that occur at a higher frequency in the viral sequences of companion animals than in viral sequences of humans, as well as SNPs, which were exclusively found in the animals investigated in the current study and not in their owners. In conclusion, our study is the first to describe the SARS-CoV-2 Delta variant transmission to animals in Switzerland and provides the first-ever description of Delta-variant pangolin lineages AY.129 and AY.4 in animals. Our results reinforce the need of a One Health approach in the monitoring of SARS-CoV-2 in animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Dogs , Humans , COVID-19/veterinary , Immunity , Pangolins , Pets , SARS-CoV-2/genetics , Switzerland/epidemiology , Cats
7.
Eur J Epidemiol ; 37(10): 1003-1024, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2041293

ABSTRACT

Non-pharmaceutical interventions, such as school closures and stay-at-home orders, have been implemented around the world to control the spread of SARS-CoV-2. Their effectiveness in improving health-related outcomes has been the subject of numerous empirical studies. However, these studies show fairly large variation among methodologies in use, reflecting the absence of an established methodological framework. On the one hand, variation in methodologies may be desirable to assess the robustness of results; on the other hand, a lack of common standards can impede comparability among studies. To establish a comprehensive overview over the methodologies in use, we conducted a systematic review of studies assessing the effectiveness of non-pharmaceutical interventions between January 1, 2020 and January 12, 2021 (n = 248). We identified substantial variation in methodologies with respect to study setting, outcome, intervention, methodological approach, and effectiveness assessment. On this basis, we point to shortcomings of existing studies and make recommendations for the design of future studies.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Schools
8.
Elife ; 112022 08 08.
Article in English | MEDLINE | ID: covidwho-1988433

ABSTRACT

The effective reproductive number Re is a key indicator of the growth of an epidemic. Since the start of the SARS-CoV-2 pandemic, many methods and online dashboards have sprung up to monitor this number through time. However, these methods are not always thoroughly tested, correctly placed in time, or are overly confident during high incidence periods. Here, we present a method for timely estimation of Re, applied to COVID-19 epidemic data from 170 countries. We thoroughly evaluate the method on simulated data, and present an intuitive web interface for interactive data exploration. We show that, in early 2020, in the majority of countries the estimated Re dropped below 1 only after the introduction of major non-pharmaceutical interventions. For Europe the implementation of non-pharmaceutical interventions was broadly associated with reductions in the estimated Re. Globally though, relaxing non-pharmaceutical interventions had more varied effects on subsequent Re estimates. Our framework is useful to inform governments and the general public on the status of epidemics in their country, and is used as the official source of Re estimates for SARS-CoV-2 in Switzerland. It further allows detailed comparison between countries and in relation to covariates such as implemented public health policies, mobility, behaviour, or weather data.


Over the past two and a half years, countries around the globe have struggled to control the transmission of the SARS-CoV-2 virus within their borders. To manage the situation, it is important to have an accurate picture of how fast the virus is spreading. This can be achieved by calculating the effective reproductive number (Re), which describes how many people, on average, someone with COVID-19 is likely to infect. If the Re is greater than one, the virus is infecting increasingly more people, but if it is smaller than one, the number of cases is declining. Scientists use various strategies to estimate the Re, which each have their own strengths and weaknesses. One of the main difficulties is that infections are typically recorded only when people test positive for COVID-19, are hospitalized with the virus, or die. This means that the data provides a delayed representation of when infections are happening. Furthermore, changes in these records occur later than measures that change the infection dynamics. As a result, researchers need to take these delays into account when estimating Re. Here, Huisman, Scire et al. have developed a new method for estimating the Re based on available data records, statistically taking into account the above-mentioned delays. An online dashboard with daily updates was then created so that policy makers and the population could monitor the values over time. For over two years, Huisman, Scire et al. have been applying their tool and dashboard to COVID-19 data from 170 countries. They found that public health interventions, such as mask requirements and lockdowns, did help reduce the Re in Europe. But the effects were not uniform across the globe, likely because of variations in how restrictions were implemented and followed during the pandemic. In early 2020, the Re only dropped below one after countries put lockdowns or other severe measures in place. The Re values added to the dashboard over the last two years have been used pro-actively to inform public health policies in Switzerland and to monitor the spread of SARS-CoV-2 in South Africa. The team has also recently released programming software based on this method that can be used to track future disease outbreaks, and extended the method to estimate the Re using SARS-CoV-2 levels in wastewater.


Subject(s)
COVID-19 , SARS-CoV-2 , Basic Reproduction Number , COVID-19/epidemiology , Europe/epidemiology , Humans , Pandemics/prevention & control
9.
Nat Microbiol ; 7(8): 1151-1160, 2022 08.
Article in English | MEDLINE | ID: covidwho-1947360

ABSTRACT

The continuing emergence of SARS-CoV-2 variants of concern and variants of interest emphasizes the need for early detection and epidemiological surveillance of novel variants. We used genomic sequencing of 122 wastewater samples from three locations in Switzerland to monitor the local spread of B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) variants of SARS-CoV-2 at a population level. We devised a bioinformatics method named COJAC (Co-Occurrence adJusted Analysis and Calling) that uses read pairs carrying multiple variant-specific signature mutations as a robust indicator of low-frequency variants. Application of COJAC revealed that a local outbreak of the Alpha variant in two Swiss cities was observable in wastewater up to 13 d before being first reported in clinical samples. We further confirmed the ability of COJAC to detect emerging variants early for the Delta variant by analysing an additional 1,339 wastewater samples. While sequencing data of single wastewater samples provide limited precision for the quantification of relative prevalence of a variant, we show that replicate and close-meshed longitudinal sequencing allow for robust estimation not only of the local prevalence but also of the transmission fitness advantage of any variant. We conclude that genomic sequencing and our computational analysis can provide population-level estimates of prevalence and fitness of emerging variants from wastewater samples earlier and on the basis of substantially fewer samples than from clinical samples. Our framework is being routinely used in large national projects in Switzerland and the UK.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Genomics , Humans , SARS-CoV-2/genetics , Wastewater
10.
Environ Health Perspect ; 130(5): 57011, 2022 05.
Article in English | MEDLINE | ID: covidwho-1865324

ABSTRACT

BACKGROUND: The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. These estimates are temporarily biased when clinical testing or reporting strategies change. OBJECTIVES: We show that the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater can be used to estimate Re in near real time, independent of clinical data and without the associated biases. METHODS: We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, Switzerland, and San Jose, California, USA. We combined this data with information on the temporal dynamics of shedding (the shedding load distribution) to estimate a time series proportional to the daily COVID-19 infection incidence. We estimated a wastewater-based Re from this incidence. RESULTS: The method to estimate Re from wastewater worked robustly on data from two different countries and two wastewater matrices. The resulting estimates were as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re. DISCUSSION: To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low-cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens. https://doi.org/10.1289/EHP10050.


Subject(s)
COVID-19 , SARS-CoV-2 , Basic Reproduction Number , COVID-19/epidemiology , Humans , RNA, Viral , Wastewater
11.
Syst Biol ; 71(6): 1440-1452, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-1860905

ABSTRACT

Phylodynamic models generally aim at jointly inferring phylogenetic relationships, model parameters, and more recently, the number of lineages through time, based on molecular sequence data. In the fields of epidemiology and macroevolution, these models can be used to estimate, respectively, the past number of infected individuals (prevalence) or the past number of species (paleodiversity) through time. Recent years have seen the development of "total-evidence" analyses, which combine molecular and morphological data from extant and past sampled individuals in a unified Bayesian inference framework. Even sampled individuals characterized only by their sampling time, that is, lacking morphological and molecular data, which we call occurrences, provide invaluable information to estimate the past number of lineages. Here, we present new methodological developments around the fossilized birth-death process enabling us to (i) incorporate occurrence data in the likelihood function; (ii) consider piecewise-constant birth, death, and sampling rates; and (iii) estimate the past number of lineages, with or without knowledge of the underlying tree. We implement our method in the RevBayes software environment, enabling its use along with a large set of models of molecular and morphological evolution, and validate the inference workflow using simulations under a wide range of conditions. We finally illustrate our new implementation using two empirical data sets stemming from the fields of epidemiology and macroevolution. In epidemiology, we infer the prevalence of the coronavirus disease 2019 outbreak on the Diamond Princess ship, by taking into account jointly the case count record (occurrences) along with viral sequences for a fraction of infected individuals. In macroevolution, we infer the diversity trajectory of cetaceans using molecular and morphological data from extant taxa, morphological data from fossils, as well as numerous fossil occurrences. The joint modeling of occurrences and trees holds the promise to further bridge the gap between traditional epidemiology and pathogen genomics, as well as paleontology and molecular phylogenetics. [Birth-death model; epidemiology; fossils; macroevolution; occurrences; phylogenetics; skyline.].


Subject(s)
COVID-19 , Animals , Bayes Theorem , Cetacea , Fossils , Humans , Paleontology , Phylogeny
12.
Epidemics ; 39: 100576, 2022 06.
Article in English | MEDLINE | ID: covidwho-1851042

ABSTRACT

The SARS-CoV-2 pandemic led to a huge increase in global pathogen genome sequencing efforts, and the resulting data are becoming increasingly important to detect variants of concern, monitor outbreaks, and quantify transmission dynamics. However, this rapid up-scaling in data generation brought with it many IT infrastructure challenges. In this paper, we report about developing an improved system for genomic epidemiology. We (i) highlight key challenges that were exacerbated by the pandemic situation, (ii) provide data infrastructure design principles to address them, and (iii) give an implementation example developed by the Swiss SARS-CoV-2 Sequencing Consortium (S3C) in response to the COVID-19 pandemic. Finally, we discuss remaining challenges to data infrastructure for genomic epidemiology. Improving these infrastructures will help better detect, monitor, and respond to future public health threats.


Subject(s)
COVID-19 , Computational Biology/statistics & numerical data , Genomics , Pandemics , SARS-CoV-2/genetics , COVID-19/epidemiology , Computational Biology/trends , Humans , Molecular Sequence Data , Switzerland/epidemiology
13.
Microorganisms ; 10(5)2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1834846

ABSTRACT

(1) Background: Some COVID-19 vaccine recipients show breakthrough infection. It remains unknown, which factors contribute to risks and severe outcomes. Our aim was to identify risk factors for SCoV2 breakthrough infections in fully vaccinated individuals. (2) Methods: We conducted a retrospective case-control study from 28 December 2020 to 25 October 2021. Data of all patients with breakthrough infection was compared to data of all vaccine recipients in the Canton of Basel-City, Switzerland. Further, breakthrough infections by Alpha- and Delta-variants were compared. (3) Results: Only 0.39% (488/126,586) of all vaccine recipients suffered from a breakthrough infection during the observational period, whereof most cases were asymptomatic or mild (97.2%). Breakthrough infections after full vaccination occurred in the median after 78 days (IQR 47-123.5). Factors with lower odds for breakthrough infection were age (OR 0.987) and previous COVID-19 infection prior to vaccination (OR 0.296). Factors with higher odds for breakthrough infection included vaccination with Pfizer/BioNTech instead of Moderna (OR 1.459), chronic disease (OR 2.109), and healthcare workers (OR 1.404). (4) Conclusions: Breakthrough infections are rare and mild but can occur early after vaccination. This implies that booster vaccination might be initiated earlier, especially for risk groups. Due to new variants emerging repeatedly, continuous monitoring of breakthrough infections is crucial.

14.
BMC Genomics ; 23(1): 289, 2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1785143

ABSTRACT

BACKGROUND: The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. RESULTS: Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. CONCLUSIONS: DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biorender.com .


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Genomics , Humans , Mutation , SARS-CoV-2/genetics , Whole Genome Sequencing
15.
Wellcome Open Res ; 6: 121, 2021.
Article in English | MEDLINE | ID: covidwho-1450989

ABSTRACT

Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.

16.
Nature ; 595(7869): 707-712, 2021 07.
Article in English | MEDLINE | ID: covidwho-1258587

ABSTRACT

Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3-5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/isolation & purification , Seasons , COVID-19/diagnosis , COVID-19/epidemiology , Europe/epidemiology , Genotype , Humans , Phylogeny , SARS-CoV-2/genetics , Time Factors , Travel/legislation & jurisprudence , Travel/statistics & numerical data
17.
Microorganisms ; 9(4)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1154452

ABSTRACT

The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs.

18.
Viruses ; 13(3)2021 03 17.
Article in English | MEDLINE | ID: covidwho-1138760

ABSTRACT

Since the emergence of coronavirus disease (COVID-19) in late 2019, domestic cats have been demonstrated to be susceptible to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) under natural and experimental conditions. As pet cats often live in very close contact with their owners, it is essential to investigate SARS-CoV-2 infections in cats in a One-Health context. This study reports the first SARS-CoV-2 infection in a cat in a COVID-19-affected household in Switzerland. The cat (Cat 1) demonstrated signs of an upper respiratory tract infection, including sneezing, inappetence, and apathy, while the cohabiting cat (Cat 2) remained asymptomatic. Nasal, oral, fecal, fur, and environmental swab samples were collected twice from both cats and analyzed by RT-qPCR for the presence of SARS-CoV-2 viral RNA. Both nasal swabs from Cat 1 tested positive. In addition, the first oral swab from Cat 2 and fur and bedding swabs from both cats were RT-qPCR positive. The fecal swabs tested negative. The infection of Cat 1 was confirmed by positive SARS-CoV-2 S1 receptor binding domain (RBD) antibody testing and neutralizing activity in a surrogate assay. The viral genome sequence from Cat 1, obtained by next generation sequencing, showed the closest relation to a human sequence from the B.1.1.39 lineage, with one single nucleotide polymorphism (SNP) difference. This study demonstrates not only SARS-CoV-2 infection of a cat from a COVID-19-affected household but also contamination of the cats' fur and bed with viral RNA. Our results are important to create awareness that SARS-CoV-2 infected people should observe hygienic measures to avoid infection and contamination of animal cohabitants.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , Genome, Viral , SARS-CoV-2/isolation & purification , Animals , COVID-19/diagnosis , COVID-19/virology , Cat Diseases/diagnosis , Cats , Feces/virology , Male , Phylogeny , Polymorphism, Single Nucleotide , RNA, Viral/genetics , SARS-CoV-2/classification , SARS-CoV-2/genetics , Switzerland
19.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: covidwho-1078660

ABSTRACT

The investigation of migratory patterns during the SARS-CoV-2 pandemic before spring 2020 border closures in Europe is a crucial first step toward an in-depth evaluation of border closure policies. Here we analyze viral genome sequences using a phylodynamic model with geographic structure to estimate the origin and spread of SARS-CoV-2 in Europe prior to border closures. Based on SARS-CoV-2 genomes, we reconstruct a partial transmission tree of the early pandemic and coinfer the geographic location of ancestral lineages as well as the number of migration events into and between European regions. We find that the predominant lineage spreading in Europe during this time has a most recent common ancestor in Italy and was probably seeded by a transmission event in either Hubei, China or Germany. We do not find evidence for preferential migration paths from Hubei into different European regions or from each European region to the others. Sustained local transmission is first evident in Italy and then shortly thereafter in the other European regions considered. Before the first border closures in Europe, we estimate that the rate of occurrence of new cases from within-country transmission was within the bounds of the estimated rate of new cases from migration. In summary, our analysis offers a view on the early state of the epidemic in Europe and on migration patterns of the virus before border closures. This information will enable further study of the necessity and timeliness of border closures.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/isolation & purification , COVID-19/virology , Europe/epidemiology , Genome, Viral , Humans , Phylogeography , SARS-CoV-2/genetics
20.
Science ; 370(6522)2020 12 11.
Article in English | MEDLINE | ID: covidwho-970759

ABSTRACT

Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/veterinary , Endemic Diseases/veterinary , Facial Neoplasms/epidemiology , Facial Neoplasms/veterinary , Marsupialia , Animals , Communicable Diseases, Emerging/genetics , Extinction, Biological , Facial Neoplasms/genetics , Phylogeny , Tasmania/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL